

 Project On : CALCULATOR

 Developed By

Name: NISHA RANI

Roll No: 213175

 2

 PUNJABI UNIVERSITY PATIALA

 CERTIFICATE

 This is to certify that this Report titled ADDRESS BOOK embodies

original work done by NISHA RANI in Partial Fulfillment of their course

required at BCA

 3

 System Analysis & Configuration

System Summary: Processor: Pentium 4 (Intel)

 OS : Windows XP

 RAM : 256 MB

 HD : 40 GB

 4

 Project Contents

S.no Topic Page No.

1. Introduction to Java 7

2. Basic of Oops 10

3. JDBC 19

4. Types Of JDBC Drivers 21

5. Project Introduction 23

6. Project Snapshots 24

7. Complete Overview 24-38

8. Bibliography 39

 5

 6

1. INTRODUCTION TO JAVA

Java is an object oriented programming language that was designed to meet the need

for a platform independent language. Java is used to create applications that can run

on a single computer as well as a distributed network. Java is both a language and a

technology used to develop stand –alone and internet-based applications.

 With the increasing use of internet, Java has become a widely

used programming language. Java software works everywhere, from the smallest

devices, such as microwave ovens and remote controls to supercomputers. Java

programs are independent of the type of computer, telephone, television, or the

operating system these devices run on. The java programs work on any type of

compatible device that supports java. The first version that was released in the

market was 1.02. Java seduces programmers with its friendly syntax, object-oriented

features, memory management, and best of all- the promise of portability.

 Java 1.02 was slow and had 250 classes in it. The big thing

in this version of the java was Applets. Then a newer version of java that was java

1.1 was introduced. It was faster, more capable, friendlier and had better GUI code

than its earlier version. It had 500 classes in it. Then java2(versions 1.2-1.4) was

introduced which is much faster then its earlier versions. It has 2300 classes in it. It

comes in three flavors: Micro Edition (J2ME), Standard Edition (J2SE) and

Enterprise Edition (J2EE). It becomes the language of choice for new enterprise

(especially web-based) and mobile applications. Then java 5.0(versions 1.5 and up)

was introduced. It has 3500 classes in it. It is more powerful, easier to develop

with then its previous editions. Java 5.0 is also known as “Tiger” (its marketing

name).

2. NEED FOR JAVA

 7

The java language contains built-in-support for the World Wide Web (WWW),

which is a service of the internet to retrieve information in the form of Web pages.

The primary motive behind developing java language was the need for a portable

and platform-independent language that could be used to produce code that would

run on a variety of control processing unit (CPU) under different environments. We

can use java to develop network-oriented programs because networking features are

built in features in java. Java is simple, object-oriented, compiled and

interpreted, portable, distributed and a secure language.

JAVA VIRTUAL MACHINE (JVM)

The JVM forms the base for the java platform and is convenient to use on various

hardware-based platforms.

 8

Components of the JVM

JVM for different platforms uses different techniques to execute the Bytecode. The

major components of JVM are:

1. Class loader

2. Execution engine

3. Just In Time (JIT) compiler.

1. Class Loader: The class loader loads the class files, which are required by a

program running in the memory. The classes are loaded dynamically when required

by the running program. A JVM can have following types of class loaders:

1.1 Primordial Class Loader: Loads the Java API classes required by the running

Java program.

 9

1.2 Class Loader Objects: Loads the classes of the Java application program. An

application can create class loaders at runtime for loading the classes of the

application.

2. Execution Engine: The Java execution engine is the component of the JVM that

runs the Bytecode one line after another. The execution engines implemented by

different vendors use different techniques to run the Bytecode. The Java execution

engine converts the Bytecode to the machine object code and runs it.

3. JIT Compiler: The JIT compiler is used for compiling the Bytecode into

executable code. The JVM runs the JIT compiled code without interpreting because

the JIT-compiled code is in the machine code format. Running the JIT-compiled

code is faster than running the interpreted code because it is compiled and does not

require being run, line after line.

3. BASIC CONCEPTS OF OOPS

1. ENCAPSULATION: “Encapsulation is the process of hiding all of the

details of an object that do not contribute to its essential

characteristics.” It implies that the non-essential details of an object are

hidden from the user and an access is provided to its essential details.

Therefore, it is also known as information hiding.

 In object-oriented methodology, need of

encapsulation arises because the emphasis is on designing classes in such a

manner that the classes share data and methods among themselves.

Encapsulation is the feature that provides security to the data and the

methods of a class.

2. ABSTRACTION: “An abstraction denotes the essential

characteristics of an object that distinguishes it from all other kinds of

objects and thus provides crisply defined conceptual boundaries,

relative to the perspective of the viewer.”

 Abstraction refers to the attributes of an object that clearly

democrats it from other objects. The concept of abstraction is implemented

in object-oriented programming by creating classes. All the attributes of the

objects of the classes are defined in the class. However we cannot store any

data in a class because creating a class does not allocate any memory space

to the class. To store data, we need to create objects of the class, which have

 10

memory allocated as soon as it is created. Classes form the templates for

creating objects. In addition to this, abstraction enables to provide a

restricted access to data. In object-oriented programming, abstraction means

ignoring the non-essential details of an object and concentrating on its

essential features.

3. INHERITANCE: In object-oriented methodology, inheritance

enables to extend the functionality of an existing class. We can create a

class that inherits the attributes and behavior of another class. In addition,

the new class can consist of a few new attributes and behaviors that are

specific to the class. In terms of classes and objects, attributes refer to the

data and behavior refer to the methods. There are various types of

inheritance like Single inheritance, Multiple inheritance, Multilevel

inheritance, Hybrid inheritance, Multipath inheritance and Hierarchical

inheritance.

4. POLYMORPHISM: Polymorphism is derived from two latin words-

poly, which means many, and morph, which means forms. Any thing that

exists in more than one form is known as a polymorph.

 In object-oriented methodology, polymorphism is

the feature that enables us to assign a different meaning or usage to an entity

in different contexts. The entity can be a variable, method ,or an object.

Polymorphism enables an entity to have more than one form depending upon

the context in which it is used. Polymorphism enables one entity to be used

as a general category for different types of actions.

EXCEPTION HANDLING IN JAVA

The term exception in java indicates an exceptional event. It can be defined

as an abnormal event that occurs during program execution and disrupts the

normal flow of instructions. The abnormal event can also be an error in the

program.

 Errors in a java program are categorized into two groups:

compile-time errors and run-time errors. Compile- time errors occur when

we do not follow the syntax of a programming language. The compiler

detects the syntax error of the program while compiling the program.

 11

 Run time errors occur during the execution of a program.

These can occur due to Running out of memory, Resource allocation errors,

Inability to find files, or Problem in network connectivity.

EXCEPTION CLASSES: To handle exceptions, the java run-time system

searches for an exception-handler. In java, a catch statement is an exception

handler that is used to handle an exception. The search for an exception

handler begins with the method in which the exception is raised. If no

appropriate exception-handler is found, the java run-time system searches

the exception-handler in the next higher method hierarchy. The type of

exception handled by the exception-handler should match the type of

exception thrown. The java run-time system proceeds with the normal

execution of the program after an exception gets handled. If no appropriate

exception-handler is found by the java run-time system, the program is

terminated.

 In java, Throwable class is the superclass of all the

exception classes. Object class is the base class of the exception

hierarchy. The Exception class and the Error class are two subclasses of

the Throwable class. Exception handling can be implemented by using

try, catch, throw, throws and finally keywords available in java.

 12

AWT (ABSTRACT WINDOW TOOLKIT)

Java provides the AWT control components, which contains classes that enable us to

create standard components, such as buttons, labels, and text fields in java. A java

component enables us to accept input from an end user. We can position AWT

components in containers using the different layout managers.

 An AWT control is a component that enables end users to

interact with applications created in java. All AWT controls in java are subclasses of

 13

the Component class. the Component class provides the add() method to add AWT

components, such as an applet or a window, to containers. The various classes that

we can use for creating AWT controls are:

1. TextField Class: Text Fields are user interface components that accept

text input from end user. A text field enables us to type text in a single

line.

2. TextArea Class: Text areas are also used to accept text input from an

end user, but it enables us to type text in multiple lines.

3. Button Class: Buttons are AWT controls that are used for handling

events. Java provides the Button class to create AWT button components.

4. List Class: List control is a scrollable list of text items that enables us to

select either one item or multiple items. We can create a list using the

List class in java.

5. CheckBox Class: Check boxes are the components that exist in dual

state, checked and unchecked. We can change the state of a check box by

clicking the check box. We can create a check box by using CheckBox

class.

6. Label Class: Labels are used for displaying a single line of text in a

container. We can create a label by using Label class.

THE SWING COMPONENTS

 Swing components also provide GUI environment to java in

addition to applets. Swing components are a collection of lightweight visual

components that provide a replacement for heavyweight AWT components.

The major difference between the lightweight visual components and

heavyweight visual components is that lightweight components have

transparent pixels while the latter are opaque.

 14

 Swing components contain the Pluggable Look And

Feel (PL&F) feature that allows applications to have the same behavior on

various platforms.

SWING COMPONENT CLASS HIERARCHY

The JComponent class is the root of the Swing hierarchy, which is an

extension of the AWT container class. the class hierarchy of the Swing

components is categorized into:

1. Top-level Swing Containers: Acts as a container for placing the

intermediate-level and atomic swing components, such as panels,

 15

frames, buttons, and check boxes. The various top-level swing

containers are:

A. JFRAME

B. JAPPLET

C. JDIALOG

2. Intermediate-level Swing Containers: Placed on the top-level

containers and contains atomic components, such as buttons, check

boxes, and labels. The various intermediate-level swing components

are:

A. JPanel

B. JtabbedPane

C. JscrollPane

D. JToolBar

3. Atomic Components: Placed on the intermediate-level swing

containers. Atomic components are used to accept input from a user.

The various atomic components are:

A. JTextField

B. JComboBox

C. JCheckBox

D. JButton

E. JLabel

F. JTable

 16

EVENT-HANDLING IN JAVA

 An object that describes a change of state in a source component is

called an event. The source components can be the elements of the

Graphical User Interface (GUI). When we interact with these source

components, their state changes, and this change of state causes various

events to occur. For example, pressing a mouse button generates an event.

The operating system traps the event and the data associated with it,

such as the time of event occurrence and type of event occurred. The

event type can be a mouse event, window event, or a mouse motion

event. The operating system then passes this data to the application to

which the event belongs.

 In java events are supported by the classes and interfaces

defined in the java.awt.event package. The event-driven program contains

objects with methods that control the various events and circumstances.

SOURCES OF EVENTS: Event sources are the Abstract Window Toolkit

(AWT) GUI components, such as buttons, choice lists, and scroll bars. An

 17

event source can generate various types of events depending upon the

change of state of the event source.

EVENT LISTENERS AND EVENT HANDLERS: An event listener

listens for a specific event and is notified when that specific event

occurs. An event listener registers with one or more event sources to

receive notifications about specific types of events and processes the

events. An event-handler is called by the event-listener whenever a

specific event occurs.

 In java, event listeners are interfaces and the event-handlers

are the methods declared in the event listener interface that is implemented

by the application. The methods that are defined in the set of interfaces and

classes are found in the java.awt.event package.

 For example, the MouseMotionListener interface defines

two methods to receive notification when a mouse is moved or dragged.

 An event source registers event listeners, which receive

the notifications about a specific type of event generation. The syntax of a

method that registers an event listener with an event source is:

 public void addTYPEListener (TYPEListener obj)

In the preceding syntax, TYPE is a type of event that an event listener

handles, such as an action event or an item event and obj is a reference to the

event listener.

For example, the addActionListener () method is used to register an action

event listener and the addMotionListener () is used to register a mouse

motion listener.

 18

 19

JAVA DATA BASE CONNECTIVITY (JDBC)

Java applications cannot directly communicate with a database to submit

data and retrieve the results queries. This is because a database can interpret

only SQL statements and not java language statements. For this reason, you

need a mechanism to translate java statements into SQL statements. The

JDBC architecture provides the mechanism for this kind of translation. The

JDBC architecture can be classified into two layers:

1. JDBC Application Layer: signifies a Java application that

uses the JDBC API to interact with the JDBC drivers. A JDBC

driver is software that a Java application uses to access a

database. The JDBC driver manager of JDBC API connects the

Java application to the server.

2. JDBC driver Layer: Acts as an interface between a Java

application and a database. This layer contains a driver, such as a

SQL Server driver or an Oracle driver, which enables connectivity

to a database. A driver sends the request of a Java application to

the database. After processing the request, the database sends the

response back to the driver. The driver translates and sends the

response to the JDBC API. The JDBC API forwards it to the Java

application.

 20

THE JDBC-ODBC BRIDGE DRIVER

The JDBC-ODBC Bridge driver is called the Type-1 driver. The JDBC-

ODBC Bridge driver converts JDBC calls to Open Database Connectivity

(ODBC) calls. ODBC is an open standard API to communicate with

databases. The JDBC-ODBC bridge driver enables a Java application to use

any database that supports ODBC driver. A Java application cannot interact

directly with the ODBC driver. For this reason, the application uses the

JDBC-ODBC Bridge driver that works as an interface between the

application and the ODBC driver. To use the JDBC-ODBC Bridge driver

you need to have the ODBC driver installed on the client computer. The

JDBC-ODBC Bridge driver is usually used in stand-alone applications. The

following figure shows the working of JDBC-ODBC Driver:

 21

 22

PROJECT DETAILS

 23

1) Opening Page of our calculator

 24

Coding of the project

 25

import java.awt.*;

import java.awt.event.*;

class ss extends Frame implements ActionListener{

int a=0,b=0,c=0,i=0;

TextField tf;

Button b1,b2,b3,b4,b5,b6,b7,b8,b9,b0;

Button badd,bsub,bmul,bdiv,bexit,bequal;

ss(){

 setLayout(new BorderLayout());

 setSize(300,300);

Panel p1 = new Panel(new GridLayout(1,1));

Panel p2 = new Panel(new GridLayout(4,4));

 tf=new TextField(10);

 p1.add(tf);

b1=new Button("1");

b2=new Button("2");

b3=new Button("3");

b4=new Button("4");

b5=new Button("5");

b6=new Button("6");

b7=new Button("7");

b8=new Button("8");

b9=new Button("9");

b0=new Button("0");

badd=new Button("+");

bsub=new Button("-");

bmul=new Button("*");

bdiv=new Button("/");

bexit=new Button("exit");

bequal=new Button("=");

p2.add(b1);

p2.add(b2);

 26

p2.add(b3);

p2.add(b4);

p2.add(b5);

p2.add(b6);

p2.add(b7);

p2.add(b8);

p2.add(b9);

p2.add(b0);

p2.add(badd);

p2.add(bsub);

p2.add(bmul);

p2.add(bdiv);

p2.add(bexit);

p2.add(bequal);

 add(p1,BorderLayout.NORTH);

 add(p2,BorderLayout.CENTER);

b1.addActionListener(this);

b2.addActionListener(this);

b3.addActionListener(this);

b4.addActionListener(this);

b5.addActionListener(this);

b6.addActionListener(this);

b7.addActionListener(this);

b8.addActionListener(this);

b9.addActionListener(this);

b0.addActionListener(this);

badd.addActionListener(this);

bsub.addActionListener(this);

bmul.addActionListener(this);

bdiv.addActionListener(this);

bexit.addActionListener(this);

bequal.addActionListener(this);

 }

public void actionPerformed(ActionEvent ae){

 String s=ae.getActionCommand();

 27

if(s.equalsIgnoreCase("exit"))

 System.exit(0);

if(s.equalsIgnoreCase("1"))

 tf.setText(tf.getText()+s);

if(s.equalsIgnoreCase("2"))

 tf.setText(tf.getText()+s);

if(s.equalsIgnoreCase("3"))

 tf.setText(tf.getText()+s);

if(s.equalsIgnoreCase("4"))

 tf.setText(tf.getText()+s);

if(s.equalsIgnoreCase("5"))

 tf.setText(tf.getText()+s);

if(s.equalsIgnoreCase("6"))

 tf.setText(tf.getText()+s);

if(s.equalsIgnoreCase("7"))

 tf.setText(tf.getText()+s);

if(s.equalsIgnoreCase("8"))

 tf.setText(tf.getText()+s);

if(s.equalsIgnoreCase("0"))

 tf.setText(tf.getText()+s);

if(s.equalsIgnoreCase("+"))

{ i=1;

 a=Integer.parseInt(tf.getText());

 tf.setText("");

}

if(s.equalsIgnoreCase("-"))

{ i=2;

 a=Integer.parseInt(tf.getText());

 tf.setText("");

}

if(s.equalsIgnoreCase("*"))

{ i=3;

 a=Integer.parseInt(tf.getText());

 28

 tf.setText("");

}

if(s.equalsIgnoreCase("/"))

{ i=4;

 a=Integer.parseInt(tf.getText());

 tf.setText("");

 }

if(s.equalsIgnoreCase("="))

 {

 b=Integer.parseInt(tf.getText());

switch(i){

case 1:

 c=a+b;

 break;

case 2:

 c=a-b;

 break;

case 3:

 c=a*b;

 break;

case 4:

 c=a/b;

 break;

 }

tf.setText(""+c);

 }

}

}

class calculater{

public static void main(String args[]){

ss a1= new ss();

a1.setVisible(true);

}}

 29

BIBLOGRAPHY

2 HEAD FIRST JAVA 2

nd
 EDITION, KATHY SIERRA & BERT

BATES

2. JAVA FUNDAMENTALS (PART-1)-NIIT COURSEWARE

(AAE LEVEL 2)

3. JAVA FUNDAMENTALS (PART-2)-NIIT COURSEWARE(AAE

LEVEL 2)

4. PROGRAMMING IN JAVA-NIIT COURSEWARE (AAE LEVEL

2)

5. A COMPLETE REFERENCE TO JAVA, ROBERT SHIELD.

6. MICROSOFT SQL SERVER 2000, ALLAN HIRT, CATHAN

COOK, KIMBERLEY TRIPP, FRANK McBATH

7. LEARN MICROSOFT SQL SERVER 2000, JOSE A.

RAMATHO

8. www.java.sun.com

9. www.w3schools.org

10. www.google.co.in

11. www.javaranch.com

http://www.java.sun.com/
http://www.w3schools.org/
http://www.google.co.in/
http://www.javaranch.com/

